

February 2019 Activity Solutions

Warm-Up!

1. The total distance from 10 to -10 is 20 units. The distance from 7 to 10 is 3 units. Therefore, the chance that a randomly selected point from the interval $-10 \leq x \leq 10$ will be greater than or equal to 7 is $\mathbf{3 / 2 0}$.
2. A point p on the number line will be closer to 4 than to 0 if $5 \geq p>2$. The number line is $5-0=$ 5 units in length. The portion of the number line to the right of 2 through 5 has length $5-2=3$ units. Therefore, the probability that a randomly chosen point on this number line is closer to 4 than to 0 is $3 / 5=6 / 10=\mathbf{0 . 6}$.
3. Let $A B=6$ units. We know that $A B=3 A D$. So, $6=3 A D$ and $A D=6 / 3=2$ units. We also know that $A B=6 B C$. So, $6=6 B C$ and $B C=(1 / 6) A B=6 / 6=1$ unit. Finally, we know that $A B=A D+$ $C D+B C$. So, $6=2+C D+1$ and $C D=6-3=3$ units. This mean the probability that a randomly selected point on segment $A B$ is between C and D is $3 / 6=\mathbf{1 / 2}$.
4. Tetrahedron ABCD is shown here. The volume of the tetrahedron (which is a pyramid with a triangular base) is $1 / 3 \times B \times h$, where B is the area of the base, and h is the height of the tetrahedron. The area of the base $(\triangle A B C)$ is $1 / 2 \times 6 \times 6=18 \mathrm{~cm}^{2}$. Since the height is 6 cm , the volume of the tetrahedron is $1 / 3 \times 18 \times 6=\mathbf{3 6} \mathrm{cm}^{3}$.

The Problems are solved in the MATHCOUNTS ${ }^{\circ}$) [linnif video.

Follow-up Problems

5. As the figure shows, the region that includes all ordered pairs (x, y) such that $0 \leq x \leq 8$ and
 $0 \leq y \leq 4$ is a rectangle bounded by the lines $x=0$ (the y-axis), $x=8$, $y=0$ (the x-axis) and $y=4$, which has area $8 \times 4=32$ units 2. The shaded region includes all ordered pairs (x, y) where $x+y \leq 4$. This triangular region, which bounded by the lines $y=0$ (the x-axis), $x=0$ (the y-axis) and $y=4-x$, has area $1 / 2 \times 4 \times 4=8$ units 2. Thus, the probability that $x+y \leq 4$ is $8 / 32=\mathbf{1 / 4}$.
6. If we think of the possible values of a and b as perpendicular number lines, like the x - and y-axes of the coordinate plane, then we can solve this problem geometrically. As the figure shows, the region that includes all ordered pairs (a, b), where $-3 \leq a \leq 1$ and $-2 \leq b \leq 4$, is the rectangle bounded by the lines $a=-3$, $a=1, b=-2$ and $b=4$, which has area $4 \times 6=24$ units 2. The product $a b$ is positive if and only if a and b are both positive or are both negative. The shaded regions include all such ordered pairs (a, b). These rectangular regions have a combined area of $1 \times 4+2 \times 3=4+6=10$ units 2. So, the probability that the product is positive is $10 / 24=\mathbf{5 / 1 2}$.

7. Two numbers between 0 and 1 are chosen at random. We are asked to find the probability that the second number chosen will exceed the first number by at least $\frac{1}{4}$. If we choose the first number greater than $\frac{3}{4}$, the probability is 0 that the second number chosen could be greater than the first number by at least $\frac{1}{4}$. Therefore, the first number must be less than $\frac{3}{4}$. We must choose a number, x, between 0 and $\frac{3}{4}$. If we choose 0 , then all numbers above $\frac{1}{4}$ will satisfy the requirement. That's $1-\frac{1}{4}=\frac{3}{4}$ of the available numbers. And if we choose $\frac{3}{4}$, then there is no probability for choosing the second number, i.e., the probability is 0 . As the number chosen increases linearly from 0 to $\frac{3}{4}$, the probability decreases linearly from $\frac{3}{4}$ to 0 . That makes an average probability of $\frac{1}{2} \times \frac{3}{4}=\frac{3}{8}$. There is a $\frac{3}{4}$ chance of choosing a number in the range of 0 to $\frac{3}{4}$ so the probability is $\frac{3}{4} \times \frac{3}{8}=\frac{9}{32}$.

Geometrically, we can represent all possible values of the two numbers as a square of area 1 unit 2. If the first number chosen is represented by values on the x-axis and the second number chosen is represented by values on the y-axis, then the shaded region includes all ordered pairs (x, y) such that $y>x$. This region is a right triangle bounded by the lines $y=1, y=x+1 / 4$ and $x=0$ (the y-axis). The area of the shaded region is $1 / 2 \times 3 / 4 \times 3 / 4=9 / 32$ and the probability is $(9 / 32) / 1=9 / 32$.

8. Triangle $A B E$ is obtuse if and only if angle $A E B$ is obtuse. This occurs if point E is inside a semicircle with diameter AB. Suppose the semicircle has a radius of 2 units. Then the area of the semicircle would be $1 / 2 \times \pi \times 2^{2}=2 \pi$ units ${ }^{2}$. Since the square has area $4 \times 4=16$ units 2, it follows that the probability the triangle is obtuse is $2 \pi / 16=\pi / 8 \approx 0.39$.

